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Abstract
Location systems have long been identified as an impor-
tant component of emerging mobile applications. Most
research on location systems has focused on precise lo-
cation in indoor environments. However, many location
applications (for example, location-aware web search)
become interesting only when the underlying location
system is available ubiquitously and is not limited to
a single office environment. Unfortunately, the instal-
lation and calibration overhead involved for most of
the existing research systems is too prohibitive to imag-
ine deploying them across, say, an entire city. In this
work, we evaluate the feasibility of building a wide-area
802.11 Wi-Fi-based positioning system. We compare a
suite of wireless-radio-based positioning algorithms to
understand how they can be adapted for such ubiqui-
tous deployment with minimal calibration. In particu-
lar, we study the impact of this limited calibration on
the accuracy of the positioning algorithms. Our ex-
periments show that we can estimate a user’s position
with a median positioning error of 13–40 meters (de-
pending upon the characteristics of the environment).
Although this accuracy is lower than existing position-
ing systems, it requires substantially lower calibration
overhead and provides easy deployment and coverage
across large metropolitan areas.

1 Introduction
A low-cost system for user devices to discover and com-
municate their position in the physical world has long
been identified as a key primitive for emerging mo-
bile applications. To this end, a number of research
projects and commercial systems have explored mech-
anisms based on ultrasonic, infrared and radio transmis-
sions [24, 29, 2, 5]. Despite these efforts, building and
deploying location-aware applications that are usable by
a wide variety of people in everyday situations is ar-
guably no easier now than it was ten years ago.

Most current location systems do not work where peo-
ple spend much of their time; coverage in these systems
is either constrained to outdoor environments or limited
to a particular building or campus with installed location
infrastructure. For example, the most common location

system, GPS (Global Positioning System) works world-
wide, but it requires a clear view of its orbiting satel-
lites. It does not work indoors and works poorly in many
cities where the so called “urban canyons” formed by
buildings prevent GPS units from seeing enough satel-
lites to get a position lock. Ironically, that is exactly
where many people spend the majority of their time.

Similarly, many of the research location systems such
as RADAR [2], Cricket [24], and [10] only work in lim-
ited indoor environments and require considerable effort
to deploy on a significantly larger scale. In indoor envi-
ronments, these systems can provide accurate estimates
of users’ positions (within 2–4 meters). This accuracy
comes at the cost of many hours of installation and/or
calibration (e.g., over 10 hours for a 12,000 m2 build-
ing [10]) and consequently has resulted in limited de-
ployment. Arguably, for a large class of location-aware
applications (for example, location-aware instant mes-
saging or location-based search), ubiquitous availabil-
ity of location information is crucial. The primary chal-
lenge in expanding the deployment of the above systems
across, say, an entire city is the installation and calibra-
tion cost.

In this paper, we explore the question of how accu-
rately a user’s device can estimate its location using ex-
isting hardware and infrastructure and with minimal cal-
ibration overhead. This work is in the context of the
Place Lab research project [18] where we propose a po-
sitioning infrastructure designed with two goals in mind:
(1) maximizing coverage across entire metropolitan ar-
eas, and (2) providing a low barrier to entry by uti-
lizing pre-deployed hardware. Unlike GPS, Place Lab
works both indoors and outdoors. It relies on commod-
ity hardware such as 802.11 access points and 802.11
radios built into users’ devices to provide client-side po-
sitioning. Like some of the above systems, Place Lab
works by having a client device listen for radio beacons
in its environment and uses a pre-computed map of radio
sources in the environment to localize itself.

An important tradeoff while deploying such a wide-
area location system is the accuracy of the position-
ing infrastructure versus the calibration effort involved.
Place Lab makes an explicit choice to minimize the



calibration overhead while maximizing coverage of the
positioning system. We rely on user-contributed data
collected by war driving, the process of using soft-
ware [14, 20] on Wi-Fi and GPS equipped mobile com-
puters and driving or walking through a neighborhood
collecting traces of Wi-Fi beacons in order to map out
the locations of Wi-Fi access points. A typical war drive
around a single city neighborhood takes less than an
hour. Contrast this with the typical calibration time for
a single in-building positioning system that can require
many hours of careful mapping. Moreover, war driving
is already a well-established phenomenon with websites
such as wigle.net gathering war drives of over 1.4 mil-
lion access points across the entire United States.

Certainly, with limited calibration, Place Lab will es-
timate a user’s location with lower accuracy. While
this precludes using Place Lab with some applications,
there is a large class of applications that can utilize high-
coverage, coarse-grained location estimates. For exam-
ple, resource finding applications (such as finding the
nearest copy shop or Chinese restaurant) and social ren-
dezvous applications have accuracy requirements that
can be met by Place Lab even using limited calibration
data.1 Place Lab makes the tradeoff of providing local-
ization on the scale of a city block (rather than a cou-
ple of meters), but manages to cover entire cities with
significantly less effort than traditional indoor location
systems.

Moving Wi-Fi location out of controlled indoor envi-
ronments into this larger metropolitan-scale deployment
is not as simple as just making the algorithms work out-
side and inside. The calibration differences demand a
careful examination of the performance of positioning
techniques in this new environment. In this paper, we
evaluate the estimation accuracy of a number of differ-
ent algorithms (many of which were originally proposed
in the context of precise indoor location) [2, 15, 13]
in this wider context with substantially less calibration
data. Our contribution is two-fold: First, we demon-
strate that it is indeed feasible to perform metropolitan-
scale location with reasonable accuracy using 802.11-
based positioning. Our experiments show that Place Lab
can achieve accuracy in the range of 13–40 meters. Al-
though this is nowhere near the accuracy of some in-
door positioning systems, it is sufficient for many appli-
cations [3, 28, 7, 30]. Second, we compare a number of
location algorithms and report on their performance in
a variety of settings, for example, how the performance
changes as the war-driving data ages, when the calibra-
tion data is noisy, or as the amount of calibration data is

1Dodgeball.com, for example, hosts a cellphone-based social meet-
up application with thousands of daily users and relies on zipcodes
to represent users’ locations. It is well within Place Lab’s ability to
accurately estimate zip code.

reduced.
The rest of the paper is organized as follows. In Sec-

tion 2, we discuss relevant related work. Section 3 gives
an overview of our research methodology. In Section 4,
we present our experimental results. Finally, we discuss
the implications of our results in Section 5 and conclude
in Section 6.

2 Related Work
Location sensing for ubiquitous computing has been an
active area of research since the PARCTAB [27] of 1993.
Since then, many location technologies have been ex-
plored, most of them summarized in [11]. This paper
is focused on using Wi-Fi as a location signal, an idea
first published by Bahl and Padmanabhan in 2000 and
called RADAR [2]. RADAR used Wi-Fi “fingerprints”
previously collected at known locations inside a build-
ing to identify the location of a user’s device down to
a median error of 2.94 meters. Since then, there have
been many other efforts aimed at using Wi-Fi for loca-
tion. While nearly all Wi-Fi location work has been for
inside venues, a few are intended to work outdoors as
well. UCSD’s Active Campus project [8] uses Wi-Fi to
locate devices inside and outside based on a simplistic
algorithm that relies on known positions of access points
on a university campus. Recently, the Active Campus
project has redesigned its system to use Place Lab in-
stead of their original positioning system.

The main difference between Place Lab and previ-
ous Wi-Fi location work is that previous work has taken
advantage of limited-extent venues where either the ac-
cess point locations were known (e.g., ActiveCampus)
or where extensive radio surveying was deemed practi-
cal (e.g., RADAR). Place Lab instead depends on war
driving collected by a variety of users as they move nat-
urally throughout a region. This means that the Wi-Fi
radio surveys rarely contain enough data from any one
location to compute meaningful statistics, thus eliminat-
ing the possibility of sophisticated probabilistic methods
such as used in [10, 12, 16, 17].

As mentioned above, Place Lab is intended for
metropolitan-scale deployment. Other large-scale loca-
tion systems include satellite-based GPS and its vari-
ants, the Russian GLONASS and the upcoming Euro-
pean GALILEO systems. Place Lab differs from these
in that it can work wherever Wi-Fi coverage is available,
both indoors and outdoors, whereas satellite-based sys-
tems only work outdoors and even then only when they
have a clear line of sight to the sky.

In the U.S., future requirements for cell phones de-
mand that they be able to measure their own location to
within 50–100 meters [4]. Other outdoor technologies
include Rosum’s TV-GPS [25], which is based on exist-
ing standards for digital TV synchronization signals and



gives mean positioning errors ranging from 3.2 to 23.3
meters in tests. The use of commercial FM radio sig-
nal strengths for location was explored in [15], which
showed accuracies down to the suburb level.

As more research effort is devoted to Wi-Fi location, it
becomes increasingly important to compare algorithms
fairly on common data sets taken under known condi-
tions. The only previous effort in this regard of which
we are aware is [26], which compared three different
Wi-Fi location algorithms in a single-floor office build-
ing. They compared a fingerprinting method similar to
RADAR against two methods based on estimated signal
strength probability distributions: histograms and Gaus-
sian kernels. The histogram method performed slightly
better than the other two. The paper made limited tests
with varying the number of access points. Our paper
undertakes more extensive testing using data from three
different venues and tests against wide variations in den-
sity of known access points, density of the input map-
ping data sets, and noise in calibration data.

3 Methodology
All of our Wi-Fi-based positioning algorithms depend
on an initial training phase. This involves war driving
around a neighborhood with a Wi-Fi-enabled laptop and
an attached GPS device. The Wi-Fi card periodically
“scans” its environment to discover wireless networks
while the GPS device records the latitude-longitude co-
ordinates of the war driver when the scan was performed.
We used active scanning where the laptop periodically
broadcasts an 802.11 probe request frame and listens
for probe responses from nearby access points.2 Thus,
a training data set is composed of a sequence of mea-
surements: each measurement contains a GPS coordi-
nate and a Wi-Fi scan composed of a sequence of read-
ings, one per access point heard during the scan. Each
reading records the MAC address of the access point and
the signal strength with which it was heard.

Once the training phase is completed, the training data
is processed to build a “radio map” of the neighborhood.
The nature of this map depends on the positioning al-
gorithm used. With a pre-computed radio map, a user’s
device can simply perform a Wi-Fi scan and position it-
self by comparing the set of access points heard against
the radio map. We term this the positioning phase.

One question worth asking is “if GPS is insufficient
as a positioning system in urban environments, how do
we justify its use in constructing the training data sets.”
This is because, unlike GPS which requires line of sight
to the sky, 802.11 radio beacons can be heard indoors as
well as outdoors. Although our calibration data is col-

2Instead of active scanning, one could use passive scanning by lis-
tening on each Wi-Fi channel for beacon frames from the nearby ac-
cess points.
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Figure 1: (a) Measured signal strength (scatterplot and
median values for 10 meter buckets) as a function of dis-
tance between the access point and a receiver. Signal
strength with dBm values closer to zero means a stronger
signal.

lected using GPS entirely outdoors, we can still use it
to position the user when he or she is indoors. More-
over, our use of a GPS device during the training phase
does not imply that all users need to have a GPS device.
For a given neighborhood, the training phase needs to
be done only once by one user (until the AP deployment
in that neighborhood changes). Once a neighborhood is
mapped, all users can determine their position without
needing any GPS device.

3.1 Metrics for Positioning
Many previous radio-based positioning systems have
used the observed signal strength as a indicator of dis-
tance from a radio source. In practice, this works only
as well as the radio beacon’s signal strength decays pre-
dictably with distance and is not overly-attenuated by
factors such as the number of walls crossed, the com-
position of those walls, and multi-path effects. For in-
stance, buildings with brick walls attenuate radio sig-
nals by a different amount than buildings made of wood
or glass. In addition to fixed obstructions in the envi-
ronment, people, vehicles and other moving objects can
cause the attenuation to vary in a given place over time.

To characterize how observed 802.11 signal strengths
varied with distance, we collected 500 readings at vary-
ing distances from a access points with well known loca-
tions in an urban area. Figure 1 illustrates the variation
in signal strength for a single access point in a busy cof-
fee shop3 as a function of the distance between the AP
and the receiver. This graph plots the individual read-
ings as well as showing how the median signal strength
changes with distance.

3We observed similar behavior from the other access points and we
show one AP’s data for the sake of clarity.
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Figure 2: Response rate for a single AP as a function of
distance from that AP. Response rate is defined as fol-
lows: the percentage of times that a given AP was heard
in all of the Wi-Fi scans at a specific distance from that
AP. In the above graph we plot a histogram of response
rate after grouping all distances into 5 meter buckets.

The points for the individual readings show consider-
able spread for a given distance, and medium to weak
readings (-70 to -90 dBm) occur at all distances. The
curve showing the median signal strength does indicate
however that there is a trend towards seeing weaker sig-
nals as distance from an access point grows. This indi-
cates that while care needs to be taken, signal strength
can be used as a weak indicator of distance and can thus
be used to improve location estimation over simple ob-
servation.

In addition to signal strength, we explore a new metric
for estimating a user’s position. We define the response
rate metric as follows: from the training data set, we
collect all Wi-Fi scans that are at the same distance from
an access point; we then compute the fraction of times
that this AP is heard in that collection of Wi-Fi scans.
For scans close to the AP, we expect the response rate
to be high while for scans further away, with signal at-
tenuation and interference, the AP is less likely to be
heard and so the response rate will be low. We measured
the response rate as a function of distance, and as can be
seen in Figure 2, there is a strong correlation between the
response rate and the distance from the AP. Our results
may seem contradictory to the results from Roofnet [1],
which shows packet loss rate has low correlation to dis-
tance. Roofnet measured the raw loss rate of 1500 byte
broadcast packets across distant nodes (over 100 me-
ters). On the other hand, we measure probe response rate
of APs within 100 meters. The probe response packet is
about 100 bytes and uses link-level unicast retransmis-
sions. With shorter distance, smaller sized packets and
link-level retransmissions, we noticed a stronger corre-
lation between response rate and distance.

These observations tend to reduce our confidence in
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Figure 3: Variation in signal strength over a one hour
period for three distinct access points measured at a sin-
gle location.

algorithms that depend on signal strength varying pre-
dictably as a function of distance to the access point.
Response rate appears to vary much more predictably
vs. distance. However, even though the effect of dis-
tance is largely unpredictable, Figure 3 indicates that for
a given location, signal strengths are relatively stable.
Thus different locations may still be reliably identified
by their signal strength signature. We test these beliefs
experimentally in the remainder of this paper.

3.2 Positioning Algorithms

Based on the above observations, we looked at three
classes of positioning algorithms. In this section, we
present an overview of these algorithms.

3.2.1 Centroid

This is the simplest positioning algorithm. During the
training phase, we combine all of the readings for a sin-
gle access point and estimate a geographic location for
the access point by computing the arithmetic mean4 of
the positions reported in all of the readings. Thus, the
radio map for this algorithm has one record per access
point containing the estimated position of that AP.

Using this map, the centroid algorithm positions the
user at the center of all of the APs heard during a scan
by computing an average of the estimated positions of
each of the heard APs. In addition to the simple arith-
metic mean, we also experimented with a weighted ver-
sion of this mechanism, where the position of each AP
was weighted by the received signal strength during the
scan.

4We do not in fact compute the centroid, but we still name this
method as such instead of using the term “mean” so as to disambiguate
the heuristic from other uses of arithmetic mean during the discussion
of our experimental results.



3.2.2 Fingerprinting
This algorithm is based on an indoor positioning mech-
anism proposed in RADAR [2]. The hypothesis behind
RADAR is as follows: at a given point, a user may hear
different access points with certain signal strengths; this
set of APs and their associated signal strengths repre-
sents a fingerprint that is unique to that position. As can
be inferred from Figure 3, radio fingerprints are poten-
tially a good indicator of a user’s position. We used the
same basic fingerprinting technique, but with the much
coarser-grained war driving compared to the in-office
dense dataset collected for RADAR. Thus, for finger-
printing, the radio map is the raw war-driving data itself,
with each point in the map being a latitude-longitude co-
ordinate and a fingerprint containing a scan of Wi-Fi ac-
cess points and the signal strength with which they were
heard.

In the positioning phase, a user’s Wi-Fi device per-
forms a scan of its environment. We compare this scan
with all of the fingerprints in the radio map to find the
fingerprint that is the closest match to the positioning
scan in terms of APs seen and their corresponding sig-
nal strengths. The metric that we use for comparing vari-
ous fingerprints is k-nearest-neighbor(s) in signal space
as described in the original RADAR work. Suppose the
positioning scan discovered three APs A, B, and C with
signal strengths (SSA, SSB , SSC). We determine the
set of recorded fingerprints in the radio map that have
the same set of APs and compute the distance in sig-
nal space between the observed signal strengths and the
recorded ones in the fingerprints. Thus, for each match-
ing fingerprint with signal strengths (SS ′

A
, SS′

B
, SS′

C
),

we compute the Euclidean distance:
√

(SSA − SS′

A
)2 + (SSB − SS′

B
)2 + (SSC − SS′

C
)2

To determine the user’s position, we pick the k finger-
prints with the smallest distance to the observed scan
and compute the average of the latitude-longitude coor-
dinates associated with those k fingerprints. Based on
preliminary experiments with varying values of k, we
discovered that k = 4 provides good accuracy.

To account for APs that may have been deployed after
the radio map was generated and for lost beacons from
access points, we apply the following heuristics. First,
during the positioning phase, if we discover any AP that
never appears in the radio map, we ignore that AP. Sec-
ond, when matching fingerprints to an observed scan, if
we cannot find fingerprints with the same set of APs as
heard in the scan, we expand the search to look for fin-
gerprints that have supersets or subsets of the APs in the
observed scan. We match fingerprints that have at most
p different APs between the fingerprint in the radio map
and the observed scan. These heuristics help improve the

matching rate for fingerprints significantly from 70% to
99%. Across all of our data sets, we found that p = 2
provides the best matching rate without reducing overall
accuracy.

Fingerprinting is based on the assumption that the
Wi-Fi devices used for training and positioning mea-
sure signal strengths in the same way. If that is not
the case (due to differences caused by manufactur-
ing variations, antennas, orientation, etc.), one can-
not directly compare the signal strengths. To ac-
count for this, we implemented a variation of fin-
gerprinting called ranking inspired by an algorithm
proposed for the RightSpot system [15]. Instead
of comparing absolute signal strengths, this method
compares lists of access points sorted by signal
strength. For example, if the positioning scan dis-
covered (SSA, SSB , SSC) = (−20,−90,−40), then
we replace this set of signal strengths by their rela-
tive ranking, that is, (RA, RB , RC) = (1, 3, 2). Like-
wise, if (SS′

A
, SS′

B
, SS′

C
) = (−30,−15,−45), then

(R′

A
, R′

B
, R′

C
) = (2, 1, 3). We compare the relative

rankings using the Spearman rank-order correlation co-
efficient [23]:

rS =

∑

i
(Ri − R)(R′

i
− R′)

√

∑

i
(Ri − R)2

√

∑

i
(R′

i
− R′)2

where R and R′ are the means of the rank vectors. The
Spearman coefficient ranges from [−1, 1], with higher
values indicating more similar rankings. Using the rela-
tive order of signal strengths in this way means that fin-
gerprints will still match well in spite of differences in
scale, offset, or any monotonically increasing function
of signal strength separating the Wi-Fi devices. To use
ranking, the value of rS is substituted for the Euclidean
distance in the fingerprint algorithm, and rS is negated
to make more similar ranks give a smaller number.

3.2.3 Particle Filters
Particle filters have been used in the past, primarily
in robotics, to past fuse a stream of sensor data into
location estimates [9, 21, 13]. A particle filter is a
probabilistic approximation algorithm that implements
a Bayes filter [6]. It represents the location estimate of
a user at time t using a collection of weighted particles
pi

t, w
i
t, (i = 1...n). Each pi

t is a distinct hypothesis about
the user’s current position. Each particle has a weight wi

t

that represents the likelihood that this hypothesis is true,
that is, the probability that the user’s device would hear
the observed scan if it were indeed at the position of the
particle. A detailed description of the particle filter al-
gorithm can be found in [13].

Particle-filter based location techniques require two
input models: a sensor model and a motion model. The



Neighborhood AP density # APs/
(APs/km2) scan

Downtown Seattle 1030 2.66
Ravenna 1000 2.56
Kirkland 130 1.41

Table 1: AP density in the three areas measured per
square kilometer and per Wi-Fi scan. The # APs/scan in-
cludes only those Wi-Fi scans that detected at least one
access point.

sensor model is responsible for computing how likely an
individual particle’s position is, given the observed sen-
sor data. For Place Lab, the sensor model estimates how
likely it is that a given set of APs would be observed at
a given location. The motion model’s job is to move the
particles’ locations in a manner that approximates the
motion of the user.

For our experiments, we built two sensor models: one
based on signal strength, while the other based on the
response rate metric defined earlier. During the train-
ing phase, for each access point, we build an empiri-
cal model of how the signal strength and response rate
vary by distance. Rather than fit the mapping data to
a parametric function, Place Lab maintains a small ta-
ble with an entry for each 5 meter increment in dis-
tance from the estimated AP location. Response rates
are recorded as a percentage, while the signal strength
distribution is recorded as a fraction of observations with
low, medium and high strength for each distance bucket.
The low/medium/high cut-offs are determined empiri-
cally to split the training data for each AP uniformly
into the three categories. As an example, Place Lab will
compute and record that for an AP x, its response rate at
60 meters is (say) 55%. We also record that at 60 me-
ters, that AP will be seen with medium signal strength
much more often than low or high. Given a new Wi-
Fi scan, the sensor model determines a particle’s likeli-
hood as follows: for each AP in the scan, we look up
the response rate or the probability of seeing the mea-
sured signal strength based on the distance between the
particle and the estimated AP location in the radio map.

Place Lab uses a simple motion model that moves par-
ticles random distances in random directions. Our future
work includes incorporation of more sophisticated mo-
tion models (such as those by Patterson et al. [22]) that
model direction, velocity and even mode of transporta-
tion.

3.3 Data Collection
We collected traces of war-driving data in three neigh-
borhoods in the Seattle metropolitan area5:

• Downtown Seattle: a mix of commercial and resi-
dential urban high-rises

• Seattle’s Ravenna neighborhood: a medium-
density residential neighborhood

• Kirkland, Washington: a sparse suburb of single-
family homes

For each neighborhood, we collected traces in two
phases. First we constructed training data sets by driv-
ing around each neighborhood for thirty minutes with a
Wi-Fi laptop and a GPS unit. Our data collection soft-
ware performed Wi-Fi scans four times per second us-
ing an Orinoco-based 802.11b Wi-Fi card. GPS read-
ings were logged approximately once per second. To as-
sign latitude-longitude coordinates to each Wi-Fi scan,
we used linear interpolation between consecutive GPS
readings based on the timestamps associated with the
Wi-Fi scans and the two GPS readings.

In the second phase, we collected another set of traces
for each neighborhood. These traces are used as test
data to estimate the positioning accuracy of the various
Place Lab algorithms. In this phase, Place Lab used only
the Wi-Fi scans collected in the trace, while the GPS
readings were used as “ground truth” to compute the ac-
curacy of the user’s estimated position. To ensure that
we gathered clean ground truth data, we tried to nav-
igate within areas where the GPS device continuously
reported a GPS lock and eliminated (and re-gathered)
traces where the GPS data was obviously erroneous.
Note that GPS has an accuracy of 5–7 meters, bound-
ing the accuracy of our measurements to this level of
granularity.

Even though Place Lab can be used both outdoors and
indoors, most of our evaluation below is based on traces
that were collected entirely outdoors. This limitation is
due to the fact that we use GPS as ground truth and hence
can evaluate Place Lab’s performance only when GPS is
available. In Section 4.6, we will present results from a
simple experiment where we used Place Lab indoors.

4 Evaluation
In this section, we present our results from a suite of
experiments conducted using the above data sets. Our
results demonstrate the effect of varying a number of pa-
rameters on the accuracy of positioning using Place Lab.

5Although the Seattle metropolitan area is a tech-friendly envi-
ronment and consequently has a higher proliferation of Wi-Fi access
points than many other parts of the country (or the world), we believe
that it represents the leading edge of an upward growth trend. So al-
though results from these areas may not necessarily apply today to
other cities with lower Wi-Fi coverage, we expect other metro areas
will eventually match Seattle’s current coverage density.
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Figure 4: Density of access points (and satellite photos provided through Microsoft’s Terraserver) for the neighbor-
hoods in which we ran our experiments.

4.1 Analysis of trace data

Figure 4 shows the distribution of the number of access
points in range per scan for each of the three areas we
measured. Table 1 shows the density of APs in the three
areas. As expected, we noticed the highest density of
APs in the downtown urban setting with an average of
2.66 APs per scan and no scans without APs. Also not
surprisingly, the suburban traces saw zero APs (that is,
no coverage) more than half the time and rarely saw
more than one. Interestingly, the residential Ravenna
data had almost the same number of APs per km2 as
downtown. With the exception of the approximately
10% of scans with no coverage, the AP density distribu-
tion for Ravenna fairly closely matched the downtown
distribution.

We also plotted the median and maximum range of
each AP based on estimated positions of the AP from
the radio map. Figure 5 shows a cumulative distribution
function (CDF) of the median and maximum ranges for
each of the three areas. In the relatively sparse Kirk-
land area, we notice that APs can be heard at a longer
range than in Ravenna. We believe that this is due to
the fact that Ravenna has a much denser distribution of
access points and thus experiences higher interference
(and consequently shorter range) as the data-gathering
station gets further away from the AP. On the other hand,
in downtown, which has about the same AP density as
Ravenna, the maximum AP range is higher. This is
due to the large number of tall buildings in downtown;
APs that are located on higher floors often have a much
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Figure 5: CDF showing the median and maximum range
of APs in meters.

longer range.

4.2 Relative performance
We now compare the relative performance of our posi-
tioning algorithms across the three areas. To evaluate the
accuracy of Place Lab’s positioning, we compare the po-
sition reported by Place Lab to that reported by the GPS
device during the collection of the positioning trace. Ta-
ble 2 summarizes the results. Ravenna, with its high
density of short-range access points, performs the best
and can estimate the user’s position with a median er-
ror of 13–17 meters. Surprisingly, for Ravenna, there is
little variation across the different algorithms. Even the
simple centroid algorithms perform relatively well.

On the other hand, in Kirkland, with much lower AP
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Figure 6: Median error as a function of number of APs
heard in a scan (Kirkland).

density, we notice that the median positioning error is
2–3 times worse. But, as we move from the centroid al-
gorithm to the particle-filter-based techniques, we notice
a substantial improvement in accuracy (25% decrease
in median error). In this case, the smarter algorithms
were better able to filter through the sparse data and es-
timate the user’s position. However, one algorithm that
performed quite poorly in Kirkland is ranking. This is
because of the significant number of times that a Wi-Fi
scan produced a single AP. With just one AP, there can
be no relative ranking, and hence the algorithm picks
a random set of k fingerprints that contain the AP and
attempts to position the user at the average position of
those randomly chosen fingerprints.

In the downtown area, even though the AP density is
the same as Ravenna, median error is higher by 5–10 me-
ters. This is due to the fact that APs in the tall buildings
of downtown typically have a larger range and thus can
be heard much further away than APs in Ravenna.

Finally, to understand the effect of the numbers of APs
per scan on the positioning accuracy, we separated the
output of the positioning traces based on the number of
APs that were heard in each scan. For each group, we
computed the median error. Figure 6 shows the median
error as a function of the number of APs that were seen
in a scan for one of the areas. Variants of algorithms
that performed similar to their counterparts are left out
for clarity. As we can see, the higher the number of APs
heard during a scan, the lower the median positioning
error. This graph also shows quite starkly the poor per-
formance of ranking in the presence of a single known
access point.

4.3 Effect of AP Turnover
When building a metropolitan-scale positioning system,
an important question to ask is how fresh the training
data needs to be in order to produce reasonable position-
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Figure 7: Median error as a function of AP turnover
(the percentage of APs that are deployed but are not part
of the training data) for Ravenna. The coverage plot
represents the variation in the percentage of time that at
least one known AP was within range.

ing estimates. In particular, new access points may be
deployed while existing APs are decommissioned. We
can express AP turnover as the percentage of currently
deployed access points that are not present in the training
data set. To measure the effect of such obsolete training
data, we generated variations of the three training sets
(one for each area) by randomly dropping access points
from the original data. This simulates the effect of hav-
ing performed the training war drive before these APs
were deployed. Note that decommissioned APs are, for
the most part, less of a problem. They result in dead state
in the training data and, except for fingerprinting, their
presence in the training data does not affect the position-
ing algorithm.

Figure 7 shows how AP turnover affects the median
positioning error for the Ravenna neighborhood.6 From
the figure, we can see that as the AP turnover rate in-
creases, the coverage (that is, the percentage of time that
at least one known AP is within range of the user) de-
creases. What is important to note though is that for
most algorithms, an AP turnover of even 30% produces
minimal effect on the positioning accuracy. The posi-
tioning error starts to increase noticeably only after at
least half of the access points in the area have turned
over. The exception to this is the ranking algorithm.
Since it relies on a fairly coarse metric for positioning
(relative rank order of AP signal strengths), the fewer
APs available for this relative ordering, the worse its per-
formance.

This data suggests that training data for an area does
not need to be refreshed too often. Of course, the re-
fresh rate (and exactly when to refresh) would depend

6Other neighborhoods showed similar behavior and their data is
left out for clarity



Algorithm Downtown Ravenna Kirkland
(meters) (meters) (meters)

centroid basic 24.4 14.8 37.0
weighted 23.4 14.5 37.0

fingerprint radar 18.5 15.3 30.0
(k=4) rank 20.3 16.7 59.5

particle filter signal strength 18.0 14.4 29.7
response rate 21.3 12.9 28.6

Table 2: Median error in meters for all of our algorithms across the three areas.

on the turnover rate of APs in that area. Our exper-
iments used variations that randomly dropped access
points across the original training data. This is rea-
sonable in dense urban areas as well as in residential
neighborhoods where there are many uncorrelated de-
ployments of access points. This is less true of large-
scale deployments, say across a suburban office complex
or a university campus, that span an entire neighborhood
and are typically upgraded in lock step.

Correlated turnover can be an issue even in seemingly
uncorrelated neighborhoods. As an anecdotal example,
we looked at the AP turnover in the Ravenna neighbor-
hood, which happens to be located near the University of
Washington. Some of the blocks that we war drove are
home to the university fraternity houses. We compared
our Ravenna data set (which was gathered after the start
of the school year) to another data set of the same neigh-
borhood that we gathered earlier during the middle of the
summer. At least 50% of the APs in the later set of traces
did not appear in our earlier traces. This was due to the
fact that between our two experiments, new students had
arrived for the fall quarter while summer students left
en masse. Hence, when determining the schedule and
frequency of refresh for the training data, it is important
to take into account such social factors that can have a
significant effect on the deployment of access points.

4.4 Effect of noisy GPS data
Some geographic regions will have higher GPS errors
than others, due to urban canyons or foliage. This next
experiment was designed to measure how robust the al-
gorithms are to errors in the measured positions of the
training data, which are normally measured via GPS.
One way to assess the effect of poor GPS data would be
to single out those areas where the GPS data is known
to be poor. However, such locations may well exhibit
Wi-Fi anomalies like multipath in urban canyons or RF
blockage in areas of thick foliage [19]. In order to assess
the overall effect of inaccurate GPS data on all our test
data, we added zero mean Gaussian noise to the origi-
nally measured latitude-longitude readings in the train-
ing data. To make the results easier to understand, we
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Figure 8: Median positioning error as a function of the
standard deviation of GPS noise (Ravenna).

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50

M
ed

ia
n 

er
ro

r (
m

et
er

s)

std. dev. of GPS noise (meters)

centroid
radar
rank

particle filter(RR)

Figure 9: Median positioning error as a function of the
standard deviation of GPS noise (Downtown).

specified the standard deviation of the noise in meters
and converted to degrees latitude or longitude with the
following:

σm = stddev in meters

σlat =
180σm

πr
= latitude stddev

σlon =
180σm

πr cos(latitude)
= longitude stddev



r = 6371× 103 = mean earth radius (meters)

We used these modified training data sets to generate
new radio maps and then computed the positioning er-
ror by running the unmodified test traces through these
maps. Figure 8 shows the effect that GPS noise has on
positioning accuracy. For the centroid algorithms, with
sufficient number of observations, the GPS noise can-
cels out while creating the radio map. Hence we see no
discernible effect on the performance of the centroid al-
gorithm. Similarly, the particle filter techniques rely on
empirical models built using the same radio map. Some
error is introduced into these models because each of the
readings that contribute to the histogram for the model
has noisy positioning data, and thus can get misclassi-
fied. However the effect of this is not substantial as seen
in Figure 8. On the other hand, for the fingerprinting
techniques, the raw (and noisy) GPS positions are used
directly in the radio map. Hence these techniques suffer
the most in the presence of GPS noise. Figure 9 shows
the same experiment for the Downtown data set. Similar
trends are visible in this graph, as well as for the Kirk-
land data (not shown).

4.5 Density of mapping data
In the next experiment, we vary the geometric density
of mapping points in the training data set. We expect
the accuracy will go down with decreasing density of
training data points. This variation is intended to find
the effect of reduced density in the training set (which
in turn means less calibration). We measured training
density as the mean distance from each point (latitude-
longitude coordinate) in the training data set to its ge-
ometrically nearest neighbor. In order to generate this
variation, we first split the training file into a grid of
10m × 10m cells. We then eliminated Wi-Fi scans from
the training data set one by one, creating a new map-
ping file after each elimination. To pick the next point to
eliminate, we randomly picked one point in the cell with
the highest population of points. If two or more cells
tied for the maximum number of points, we picked be-
tween those tied cells at random. By eliminating points
from the cells with the highest population, this algorithm
tended to eliminate points around higher densities, driv-
ing the training files toward a more uniform density of
data points for testing.

Figure 10 shows the median positioning error as a
function of the average distance to the nearest neighbor
in the training data set. The higher the average distance,
the sparser the data set.7 From the figure, we can see that
until the mapping density drops below 10 meter average

7Note that some of the highest density data points in the graph arise
as a result of the fact that we sometimes war drove the same streets
more than once thus generating a denser training data set.
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Figure 10: Positioning error as a function of the av-
erage distance between points in the training data set
(Ravenna). Note that the x-axis is a logarithmic scale.

distance between points, there is no appreciable effect
on median error. Beyond that point, however, the posi-
tioning error increases sharply. There is not much dis-
tinction in this behavior across the various algorithms.
This suggests that a training map generated at a scanning
rate of one Wi-Fi scan per second and a driving speed of
20–25 miles/hour8 (or faster speeds with repeated drives
through the same neighborhood) is sufficient to provide
reasonable accuracy.

4.6 An Indoor Usage Scenario
All of the above experiments used training and posi-
tioning data sets that were collected entirely outdoors.
Since the training data requires GPS, it must neces-
sarily be collected outdoors. In the positioning phase,
Place Lab can be used both outdoors and indoors. How-
ever, it is difficult to quantify the accuracy while indoors
since we cannot collect any ground truth GPS data. To
demonstrate the usability of Place Lab indoors, we ran
a simple experiment where we collected two-minute-
long positioning traces in nine different indoor locations,
along with longer outdoor training traces around those
locations. For each location, we computed the aver-
age position estimated by Place Lab. In addition, we
determined average latitude-longitude positions for all
nine locations by plotting their addresses into a mapping
tool (MapPoint). Table 3 summarizes the error between
Place Lab’s average estimate and the latitude-longitude
position from MapPoint.

The average error from this simple experiment ranges
from 9 to 98 meters. Although at the high end the av-
erage error is significantly higher than in our previous
experiments, it comes partially from inaccurate ground

810 meters between scans is equivalent to a driving speed of 10 ×

3600 meters/hour, that is, 22.5 miles/hour.



Location Avg. error
(meters)

Home 1 9.0
CS department 9.1
Downtown mall 9.5
Office 34.2
Bakery 38.9
Home 2 84.3
Doctor’s office 85.2
Café 92.4
Home 3 98.7

Table 3: Average error with Place Lab when used in in-
door settings.

truth data: we used a single latitude-longitude point to
represent each location when in fact each building may
be several tens of meters across. We stress that this ex-
periment is not an attempt to draw general conclusions
about the accuracy of Place Lab when used indoors with
training data that was collected outdoors. The experi-
ment only serves to show that unlike GPS, Place Lab
works indoors (and when there is no line of sight to the
sky). Of course, one should remember that the limited
calibration associated with Place Lab inherently means
that it cannot be used for precise indoor location appli-
cations.

4.7 Summary of Results
To summarize the results from the above experiments,
we noted a few dominant effects that play a role in posi-
tioning accuracy using the various location techniques.

• The density of access points as well as the aver-
age range of APs in a region affect the positioning
accuracy. In our experiments, we discovered that
the Ravenna neighborhood with a dense collection
of APs in low-rise buildings provided the best ac-
curacy while suburban neighborhoods with sparse
coverage showed the least accuracy.

• In dense urban environments, even a simple
centroid-based positioning algorithm provides the
same accuracy as more complex techniques. The
complex techniques are more valuable in sparser
environments with limited calibration data.

• Even a radio map that is old enough to have
only 50% of the deployed APs is sufficient with-
out degrading positioning accuracy by more than
a few meters. Our mapping density experiments
show that training data collected at the rate of one
scan per second with a driving speed of 20–25
miles/hour is enough to build accurate radio maps.

• Noise in GPS data (which can result from either
poor GPS units or due to urban canyons) affects

fingerprint-based techniques much more than the
other techniques. Thus, in environments where it is
hard to collect accurate GPS data for training, we
expect the particle-filter-based algorithms to per-
form better.

• The rank fingerprint algorithm was usually among
the worst performing algorithms. Its poor perfor-
mance was largely due to the fact that it throws
away absolute signal strengths. However, in return,
it also sheds its sensitivity to potential systematic
differences in the way different Wi-Fi devices mea-
sure signal strength.

5 Discussion
We now discuss some of the practical issues that must
be addressed when deploying such a system in the real
world. Our experimental setup used active scanning to
probe for nearby access points. However, APs can some-
times be configured to not respond to broadcast probe
packets. Moreover, they may never send out broadcast
beacon packets announcing their presence either. In such
scenarios, passive scanning where the Wi-Fi card does
not send out probe requests, and instead simply sniffs
traffic on each of the Wi-Fi channels, may be used. Pas-
sive scanning relies on network traffic to discover APs
and hence can detect even cloaked APs that do not nec-
essarily advertise their network IDs.

All of our experiments were performed in outdoor en-
vironments since we needed access to GPS data even for
our positioning traces to allow us to compare Place Lab’s
estimated positions to some known ground truth. How-
ever, Place Lab can work indoors as well. Even though
we were unable to perform extensive experiments to
measure Place Lab’s accuracy when indoors, our regu-
lar use of Place Lab in a variety of indoor situations has
shown that it can routinely position the user within less
than one city block of their true position. As long as
the user’s device can hear access points that have been
mapped out, Place Lab can estimate its position. This
accuracy is not sufficient for indoor location applications
that require room-level (or greater) accuracy, but is more
than enough for other coarser-grained applications. For
such applications, Place Lab can function as a GPS re-
placement that works both indoors and outdoors.

We used Wi-Fi cards based on the Orinoco chipset for
all of our experiments. As pointed out in [10], differ-
ent chipsets can report different signal strength values
for the same AP at the same location. This is because
each chipset interprets the raw signal strength value dif-
ferently. However, there is a linear correlation for mea-
sured signal strengths across chipsets. This was first
shown by Haeberlen et. al. [10]. We validated this claim
for the following chipsets: Orinoco, Prism 2, Aironet,
and Atheros. If we record the chipset information when



collecting data sets, then even if the positioning is done
using a chipset that is different from the one used for
collecting the training data, a simple linear transforma-
tion will be sufficient to map the signal strength values
across them. Of course, this is important only for those
algorithms that actually rely on signal strength for posi-
tioning.

As the first systematic study of metropolitan-scale Wi-
Fi localization, our accuracy comparisons suggest what
to pursue in terms of new positioning algorithms. We
found that different algorithms work best with different
densities and ranges of access points. Since both of these
quantities can be measured beforehand, the best algo-
rithm could be automatically switched in depending on
the current situation. Further, the size of the radio map
can be a substantial issue for small mobile devices. The
centroid and particle filter radio maps are relatively com-
pact whereas fingerprinting algorithms require the entire
training data set as their radio map. If (say for privacy
concerns), the user wishes to store the radio map for their
region on their local device, this may be a factor in de-
termining the appropriate algorithm to use.

Our studies also compare the effects of density of cal-
ibration data, noise in calibration, and age of data on the
centroid, particle filter and fingerprinting algorithms. An
algorithm combining these techniques is feasible, and it
may prove to be both robust and accurate. Moreover, one
could incorporate additional environmental data such as
(for example) constrained GIS maps of city streets and
highways for navigation applications to improve the po-
sitioning accuracy. While we leave these ideas for future
work, our study gives a concrete basis for choosing what
to do next.

6 Conclusion
Place Lab is an attempt at providing ubiquitous Wi-Fi-
based positioning in metropolitan areas. In this paper,
we compared a number of Wi-Fi positioning algorithms
in a variety of scenarios. Our results show that in dense
urban areas Place Lab’s positioning accuracy is between
13–20 meters. In more suburban neighborhoods, accu-
racy can drop down to 40 meters. Moreover, with dense
Wi-Fi coverage, the specific algorithm used for position-
ing is not as important as other factors including compo-
sition of the neighborhood (lots of tall buildings versus
low-rises), age of training data, density of training data
sets, and noise in the training data. In sparser neigh-
borhoods, sophisticated algorithms that can model the
environment more richly win out. All of this position-
ing accuracy (although lower than that provided by pre-
cise indoor positioning systems) can be achieved with
substantially less calibration effort: half an hour to map
out an entire city neighborhood as compared to over 10
hours for a single office building [10].

Interested readers may download the data sets used for
these experiments and the Place Lab source code from
http://www.placelab.org/.
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